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Abstract. We generalize the concepts of locally presentable and
accessible categories. Our framework includes such categories as
small presheaves over large categories and ind-categories. This gen-
eralization is intended for applications in the abstract homotopy
theory.

1. Introduction

The concept of a locally presentable category was introduced by
Gabriel and Ulmer [19]. It was further generalized by Makkai and
Paré who introduced accessible categories in the monograph [21] which
convincingly demonstrated the importance of this notion. Since then
locally presentable and accessible categories found numerous applica-
tions in algebra and, most prominently, in homotopy theory, where the
concept of a locally presentable category was adapted by J. Smith as a
foundation for his theory of combinatorial model categories [5, 15, 16].
In the passed decade there were several interesting examples of non-

combinatorial model structures constructed on non-locally presentable
categories [6, 11, 13, 20]. The goal of our work is to extend the notions
of the locally presentable and accessible categories, so that it could
serve as a categorical foundation for an appropriate generalization of
J. Smith’s theory. Such generalization will appear in the companion
article [12].
The definition of an accessible category consists of a combination

of a completeness condition and a smallness condition. The smallness
condition demands the existence of a set A of λ-presentable objects
such that each object is a λ-filtered colimit of objects of this set. In
our paper, we are dropping the assumption that A is a set and we
call the resulting concept a class-accessible category. This is not a new
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idea. Long before the appearance of [21], this concept was introduced
in [4] under the name of a λ-algebroidal category. The main disadvan-
tage of A being a class is that images of its objects by a functor can
have arbitrarily large presentation ranks. Nevertheless, we will show
that surprisingly many results about accessible categories can be gen-
eralized to the class-accessible setting. In particular, class-accessible
categories are closed under lax limits. Furthermore, there is a satisfac-
tory theory of injectivity and weak factorization systems in class-locally
presentable categories which is a starting point for systematic applica-
tions in homotopy theory (see [12]) leaning on several existing results
in this direction (see [6], [9], [10] and [11]).
The main example of a class-accessible category which is not ac-

cessible is the category of small presheaves on a large category. The
omnipresence of this category was the main motivation for our work.
Since orthogonality and factorization systems behave even better than
injectivity and weak factorization systems, a way is open for dealing
with small sheaves. An early work in this direction is [25].
We have to distinguish between sets and classes. This could be

formalized by saying that we are working in the Gödel-Bernays set
theory. Each set is a class, class which is not a set is called proper. A
category consists of a class of objects but hom(A,B) are sets for every
pair of objects A,B. Sometimes, such categories are called locally small
(which forces us to change the terminology introduced by topologists
[14] for classes of morphisms satisfying the cosolution set condition —
we call them cone-coreflective in this paper). A category is small if it
has a set of objects.

2. Class-accessible categories

Let us recall that a category K is called λ-accessible, where λ is a
regular cardinal, provided that

(1) K has λ-filtered colimits,
(2) K has a set A of λ-presentable objects such that every object

of K is a λ-filtered colimit of objects from A.

An object K in K is called λ-presentable if its hom-functor

hom(K,−) : K → Set

preserves λ-filtered colimits. A category is accessible if it is λ-accessible
for some regular cardinal λ. A cocomplete (λ-)accessible category is
called locally (λ-)presentable. All needed facts about locally presentable
and accessible categories can be found in [1] or [21].



CLASS-LOCALLY PRESENTABLE CATEGORIES 3

Definition 2.1. A category K is called class-λ-accessible, where λ is
a regular cardinal, provided that

(1) K has λ-filtered colimits,
(2) K has a class A of λ-presentable objects such that every object

of K is a λ-filtered colimit of objects from A.

A category is class-accessible if it is class-λ-accessible for some regu-
lar cardinal λ. A complete and cocomplete class-λ-accessible category is
called class-locally λ-presentable. A category is class-locally presentable
if it is class-locally λ-presentable for some regular cardinal λ.
Finally, a category K is called class-preaccessible if it satisfies (2) for

some regular cardinal λ.

Example 2.2. (1) Each λ-accessible category is class-λ-accessible. Sin-
ce each locally presentable category is complete, each locally λ-presen-
table category is class-locally λ-presentable.
(2) Given a category A, P(A) will denote the category of small

presheaves on A. These are functors Aop → Set which are small
colimits of hom-functors. For a small category A, we have P(A) =
SetA

op

. The category P(A) is always class-finitely-accessible (= class-
ω-accessible) because each small presheaf is a small filtered colimit of
finite colimits of hom-functors and the latter are finitely presentable.
This relies on a general fact that arbitrary colimits may be expressed as
filtered colimits of finite colimits. P(A) is always cocomplete but not
necessarily complete. For instance, it does not have a terminal object
in the case when A is a large discrete category (it means that it has
a proper class of objects and the only morphisms are the identities).
This explains why we added completeness into the definition of a class-
locally presentable category.
(3) The category Top of topological spaces is not class-locally pre-

sentable. The reason is that the only presentable objects are discrete
spaces.
(4) Given a category A, let Ind(A) be the full subcategory of P(A)

consisting of small filtered colimits of hom-functors. This construction
was introduced by Grothendieck (see [3]) and Ind(A) is always class-
finitely-accessible. In fact, each class-finitely-accessible category K is
equivalent to Ind(A) for A being the full subcategory of K consisting
of finitely presentable objects. The proof is the same as in the case of
finitely accessible categories.
This can be generalized to each regular cardinal λ by introducing

Indλ(A) as the full subcategory of P(A) consisting of small λ-filtered
colimits of hom-functors. Then Indλ(A) is always class-λ-accessible
and, conversely, each class-λ-accessible category K is equivalent to
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Indλ(presλ K) where presλ K is the full subcategory of K consisting
of λ-presentable objects. The proof is the same as in [1] 2.26.

Remark 2.3. (1) For each category A, the Yoneda embedding yields
the functor

Y : A → P(A)

making P(A) a free completion ofA under small colimits. Analogously,

Y : A → Indλ(A)

is a free completion of A under small λ-filtered colimits (the second Y
is the codomain restriction of the first one).
(2) The category Indλ(A) is cocomplete if and only if A is λ-cocom-

plete in the sense that it has λ-small colimits, i.e., colimits of diagrams
D : D → A such that the category D has less than λ morphisms. The
proof is the same as in the case of accessible categories, i.e., when A is
small (see, e.g., [1], 1.46). One can also proceed as follows.
(3) Given a class-λ-accessible category K, we can express the class

presλK as a union of an increasing chain of small subcategories indexed
by all ordinals

A0 ⊆ A1 ⊆ . . .Ai ⊆ . . .

This results in writing K as a union of a chain of λ-accessible categories

Indλ A0 ⊆ Indλ A1 ⊆ . . . Indλ Ai ⊆ . . .

and functors preserving λ-filtered colimits and λ-presentable objects. If
K is class-locally λ-presentable, we can assume that the first chain con-
sists of subcategories closed under λ-small colimits. Then the second
chain consists of colimit preserving functors. This proves (2).
(4) Recall that, given a small full subcategory A of a category K

and an object K in K, the canonical diagram of K (with respect to
A) is the forgetful functor D : A ↓ K → K. Here, A ↓ K consists of
all morphisms a : A → K with A in A and D sends a to A. We say
that K is a canonical colimit of A-objects if the family a : A → K

form a colimit cocone from the canonical diagram. If K is λ-accessible
than each object of K is a canonical colimit of its canonical diagram
with respect to presλK and this canonical diagram is λ-filtered (see [1],
Proposition 2.8).
Now, let K be a class-λ-accessible category. A consequence of (3)

is that, for each object K of K, there is a small full subcategory A of
presλK such that K is a canonical λ-filtered colimit of A-objects.
(5) The category A ↓ K used above is a special case of a general

comma-category F1 ↓ F2 where F1 : K1 → L and K2 → L are functors:
we take F1 as the inclusion of A to K and F2 the functor from the
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one-morphism category to K with the value K. The category F1 ↓ F2

has morphisms f : F1K1 → F2K2 as objects and morphisms f → f ′

are pairs of morphisms k1, k2 for which the square

F1K1
f //

F1k1

��

F2K2

F2k2

��
F1K

′
1

f ′

// F2K
′
2

commutes.
Another special case is the category of morphisms K→ = Id ↓ Id.
(6) Every locally presentable category is cowellpowered, which does

not generalize to class-locally presentable ones. For example, the or-
dered class K of ordinals with the added largest element is class-locally
ω-presentable with isolated ordinals as ω-presentable objects. But K
is not cowellpowered. Hence a class-locally presentable category does
not need to be locally ranked in the sense of [2]. Thus Theorem III.7
there does not imply our 4.3.

We will now give a criterion for when Indλ(A) is class-locally pre-
sentable, if A is λ-cocomplete, i.e., when Indλ(A) is complete. We will
need the following concepts. A set X of objects of a category K is
called weakly initial if each object K of K admits a morphism X → K

with X ∈ X . A category K is called approximately complete if, for
each diagram D : D → K, the category of cones K → D over D has a
weakly initial set.

Theorem 2.4. Let A be a λ-cocomplete category (where λ is a regular
cardinal). Then Indλ(A) is complete if and only if A is approximately
complete.

Proof. Following [18] and [22], P(A) is complete if and only if A is
approximately complete. Since A is λ-cocomplete, Indλ(A) is cocom-
plete (see 2.3 (2)). Since P(A) is a free completion of A under colimits,
there is a colimit preserving functor F : P(A) → Indλ(A) such that the
composition

A
Y

−−−−→ P(A)
F

−−−−→ Indλ(A)

is naturally isomorphic to the Yoneda embedding. Consequently, F is
left adjoint to the inclusion of Indλ(A) into P(A) (see the proof of [1],
1.45). Thus Indλ(A) is a reflective full subcategory of P(A). Hence
Indλ(A) is complete whenever A is approximately complete.
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Conversely, let Indλ(A) be complete and consider a diagramD : D →
A. We express its limit K in Indλ(A) as a filtered colimit (ke : Ae →
K)e∈E of objects from A. Now, each cone A→ D with A ∈ A, uniquely
factorizes through the limit cone via the morphism t : A → K. Since
t factorizes through some ke, the cones Ae → D obtained by precom-
posing the limit cone with ke, e ∈ E form a weakly initial set of cones
over D. Thus A is approximately complete. �

Remark 2.5. Following 2.4, a class-λ-accessible category K is class-
locally λ-presentable if and only if presλ K is λ-cocomplete and ap-
proximately complete. Following [18] and [22], P(A) is class-locally
finitely-presentable iff A is approximately complete.

Theorem 2.6. Let K be a category and λ a regular cardinal. Then
K is class-locally λ-presentable if and only if it is equivalent to a full,
reflective subcategory of P(A) closed under λ-filtered colimits for some
approximately complete category A.

Proof. Given a class-locally λ-presentable category K, we put A =
presλK and define the canonical functor

E : K → P(A)

by taking E(K) : Aop → Set to be the restriction of hom(−, K) on A.
Since

E(colimD) ∼= colimED

for each λ-filtered diagramD : D → K, each E(K) is a λ-filtered colimit
of hom-functors and thus belongs to P(A). Moreover, the functor E
preserves λ-filtered colimits. Since P(A) is a free completion of A
under colimits, there is a colimit preserving functor F : P(A) → K
such that the composition

K
E

−−−−→ P(A)
F

−−−−→ K

is naturally isomorphic to IdK. Moreover, F is left adjoint to the inclu-
sion of K into P(A). Thus K is a reflective full subcategory of P(A).
Finally, following the proof of 2.4, A is approximately complete.
Conversely, let A be an approximately complete category and K

a full reflective subcategory of P(A) closed under λ-filtered colim-
its. Since the reflection F : P(A) → K is left adjoint to the inclu-
sion of K in P(A) which preserves λ-filtered colimits, F preserves λ-
presentable objects. Since each object of P(A) is a λ-filtered colimit of
λ-presentable objects, K has the same property. Thus K is class-locally
λ-presentable. �
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Definition 2.7. A functor F : K → L is called class-λ-accessible
(where λ is a regular cardinal) if K and L are class-λ-accessible cate-
gories and F preserves λ-filtered colimits. A class-λ-accessible functor
preserving λ-presentable objects is called strongly class-λ-accessible.
F is called (strongly) class-accessible if it is (strongly) class-λ-acce-

ssible for some regular cardinal λ.

The uniformization theorem [21], 2.4.9 (see [1], 2.19) implies that
each accessible functor is strongly accessible. Among others, this uses
the fact that, given a set A of objects of an accessible category K, there
is a regular cardinal λ such that each A ∈ A is λ-presentable. This
does not generalize to class-accessible case and we have to distinguish
between class-accessible and strongly class-accessible functors here. For
example, the large discrete category D is class-ω-accessible and any
functor from D into a class-ω-accessible category is class-ω-accessible
but not always strongly class-ω-accessible.

Remark 2.8. In the same way as for accessible categories, one can
replace λ-filtered colimits in 2.1 by λ-directed ones. Moreover, one
can show that, given a regular cardinals λ ⊳ µ, each class-λ-accessible
category K is class-µ-accessible. The argument (see [1], 2.11) goes as
follows. One writes K ∈ K as a λ-directed colimit (ai : Ai → K)i∈I
of λ-presentable objects. Let Î be the poset of all λ-directed subsets
of I of cardinality less then µ (ordered by inclusion). Due to λ ⊳ µ, Î

is µ-directed. Colimits of (Ai)i∈M , M ∈ Î are µ-presentable and K is
their µ-directed colimit.
If K is µ-presentable then K is a retract of some λ-directed colimit of

(Ai)i∈M . Consequently, a strongly class-λ-accessible functor F : K → L
is strongly class-µ-accessible.
Recall that the successor λ+ of each cardinal λ is always regular and

λ ⊳ λ+.

3. Limits of class-accessible categories

The fundamental discovery of [21] is that accessible categories are
closed under constructions of limit type. In particular, they are closed
under pseudopullbacks. The distinction between pullbacks and pseu-
dopullbacks is that the latter use isomorphisms instead of identities
(see the proof of 3.1 below). We are going to show that this generalizes
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to class-accessible categories. For a pseudopullback

P
F̄ //

Ḡ

��

L

G

��
K

F
// M

we will use the notation P = PsPb(F,G).

Proposition 3.1. Let λ be a regular cardinal and F : K → M and
G : L → M strongly class-λ-accessible functors. Then their pseu-
dopullback PsPb(F,G) is a class-λ+-accessible category and F̄ , Ḡ are
strongly class-λ+-accessible functors.

Proof. Let F and G be strongly class-λ-accessible. Objects of their
pseudopullback are 5-tuples (K,L,M, f, g) where K ∈ K, L ∈ L, M ∈
M and f : FK → M , g : GL → M are isomorphisms (morphisms are
obvious). Since both F and G preserve λ-filtered colimits, PsPb(F,G)
has λ-filtered colimits and F̄ and Ḡ preserve them. It remains to
show that each object (K,L,M, f, g) from PsPb(F,G) is a λ+-filtered
colimit of objects from PsPb(F,G) which are λ+-presentable in K×L.
Following 2.8, K,L and M are class-λ+-accessible and F and G are
strongly class-λ+-accessible.
Following 2.3 (4), there is a small full subcategory A1 of presλ+ K, a

small full subcategory A2 of presλ+ L and a small full subcategory A3 of
presλ+ M, such that K is a canonical λ+-filtered colimit of A1-objects,
L is a canonical λ+-filtered colimit of A2-objects and M is a canonical
λ+-filtered colimit of A3-objects. We can also assume that A1, A2 and
A3 are closed under λ+-small λ-filtered colimits. We will denote the
canonical diagrams as C : C → K, D : D → L and E : E → M and
their canonical colimits as (kc : Cc → K)c∈C, (ld : Dd → L)d∈D and
(me : Ee → M)e∈E . Let c0 ∈ C, d0 ∈ D and e0 ∈ E . Since FCc0 and
GDd0 are λ

+-presentable, there is m01 : e0 → e1 in E , f0 : FCc0 → Ee1
and g0 : GDd0 → Ee1 such that fF (kc0) = me1f0 and gG(ld0) = me1g0.
Analogously, there is k01 : c0 → c1 in C, l01 : d0 → d1 in D and
morphisms f ′

1 : Ee1 → FCc1, g
′
1 : Ee1 → GDd1 such that f−1me1 =

F (kc1)f
′
1, f

′
1f0 = FC(k01), g

−1me1 = G(ld1)g
′
1 and g′1g0 = GD(l01).

There is m12 : e1 → e2 in E , f1 : FCc1 → Ee2 and g1 : GDd1 → Ee2
such that fF (kc1) = me2f1, f1f

′
1 = E(m12), gG(ld1) = me2g1 and

g1g
′
1 = E(m12). Continuing this procedure, we get chains (kij : ci →

cj)i<j<λ, (lij : di → dj)i<j<λ, (mij : ei → ej)i<j<λ and morphisms
fi : FCci → Eei+1, gi : GDdi → Eei+1, f

′
i : Eei → FDdi, g

′
i : Eei →
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GDdi such that f−1mei = F (kci)f
′
i , f

′
jfi = FC(kij), g

−1mei = G(ldi)g
′
i

and g′jgi = GD(lij) for each 0 < i < j < λ. In limit steps, we take
upper bounds (using the fact that C, D and E are λ-filtered). Let
Kλ = colimCci, Lλ = colimDdi and Mλ = colimEei where i < λ. We
get morphisms fλ = colim fi : FKλ →Mλ, f

′
λ = colim f ′

i :Mλ → FKλ,
gλ = colim gi : GLλ → Mλ and g′λ = colim g′i : Mλ → GLλ such
that f ′

λ = (fλ)
−1 and g′λ = (gλ)

−1. Thus (Kλ, Lλ,Mλ, fλ, gλ) belongs to
PsPb(F,G). Since Kλ belongs to A1, Lλ belongs to A2 andMλ belongs
to A3, we have found a factorization of

(kc0, ld0) : (Cc0, Dd0) → (K,L)

through (Kλ, Lλ,Mλ, fλ, gλ) → (K,L,M, f, g). The consequence is
that (K,L,M, f, g) is a λ+-filtered colimit of objects (Kλ, Lλ,Mλ, fλ, gλ)
which are λ+-presentable in PsPb(F,G). Thus PsPb(F,G) is class-λ+-
accessible and F̄ and Ḡ are strongly class-λ+-accessible. �

Remark 3.2. A functor G : K → L is transportable if for every ob-
ject L in L and an isomorphism g : GK → L there exists a unique
isomorphism f : K → K ′ such that GK ′ = L and Gf = g.
If one of functors F and G in 3.1 is transportable then, following [21,

5.1.1] , PsPb(F,G) is equivalent to the pullback of F and G.

We follow the terminology of [1] and call a full subcategory L of a
category K accessibly embedded if there is a regular cardinal λ such
that L is closed under λ-filtered colimits in K. Moreover, we say that
L is strongly accessibly embedded if there is a regular cardinal λ such
that L is closed under λ-filtered colimits in K and the inclusion of L
to K preserves λ-presentable objects.

Corollary 3.3. Let K be a class-accessible category. An intersection
of a set of class-accessible strongly accessibly embedded subcategories of
K is a class-accessible strongly accessibly embedded subcategory of K.

Proof. Let Li, i ∈ I be a set of class-accessible strongly accessibly em-
bedded subcategories of K and L be their intersection. Then L is a
multiple pullback of embeddings Li → K. Following 2.8 and [1], 2.13
(6), there is a regular cardinal λ such that each inclusion Li → K is
strongly class-λ-accessible. In the usual way, this multiple pullback
can be expressed as an equalizer of two functors between products. A
product of class-accessible categories is class accessible and both func-
tors are strongly class-λ-accessible. The equalizer can be replaced by a
pullback of strongly class-λ-accessible functors. Since this pullback is
equivalent to their pseudopullback (cf. [21] 5.1.1), it follows from 3.1
that L is class-accessible strongly class-accessibly embedded subcate-
gory of K. �
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Remark 3.4. (1) Given a class-accessible functor F : L → K, the full
subcategory of K consisting of objects F (L), L ∈ L is called the full
image of F .
(2) It is easy to see that, if a full image of a strongly class-accessible

functor L → K is closed in K under λ-filtered colimits for some regular
cardinal λ, then it is class-accessible.

Corollary 3.5. Let F1 : L1 → K and F2 : L2 → K be strongly class-
accessible functors. Then the pseudopullback P of their full images
F1(L1) → K and F2(L2) → K is the full image of a strongly class-
accessible functor M → K.

Proof. It follows from 3.1 in the same way as in [24], 2.6. �

Recall that, given functors F,G : K → L and natural transforma-
tions ϕ, ψ : F → G, the equifier Eq(ϕ, ψ) is the full subcategory of K
consisting of all objects K such that ϕK = ψK .

Proposition 3.6. Let F,G : K → L be strongly class-accessible func-
tors and ϕ, ψ : F → G natural transformations. Then Eq(ϕ, ψ) is a
class-accessible category strongly accessibly embedded in K.

Proof. Assume that F and G are strongly class-λ-accessible. The first
observation is that, given a natural transformation α : F → G and a
λ-filtered colimit K = colimKd, we have αK = colimαKd

. As a conse-
quence we get that Eq(ϕ, ψ) is closed in K under λ-filtered colimits.
We will show that each object K ∈ Eq(ϕ, ψ) is a λ+-directed colimit

of objects of Eq(ϕ, ψ) which are λ+-presentable in K. This will yield
that Eq(ϕ, ψ) is class-λ+-accessible and the inclusion of Eq(ϕ, ψ) into
K is strongly class-λ+-accessible. We will proceed in a similar way
as in the proof of 3.1. First, we know that K is class-λ+-accessible.
Consider K ∈ Eq(ϕ, ψ) and take a small full subcategory A of presλ+ A
such that K is a canonical λ+-filtered colimit of A-objects. We also
assume that A is closed in K under λ+-small λ-filtered colimits. We
denote the canonical diagram as D : D → K and its canonical colimit
as (kd : Dd→ K)d∈D. Let d0 ∈ D. Since

kd0ϕDd0 = kd0ψDd0 ,

there is k01 : d0 → d1 ∈ D such that D(k01)ϕDd0 = D(k01)ψDd0 . Con-
tinuing this procedure, we get a chain (kij : di → dj)i<j<λ, such that

D(kij)ϕDdi = D(kij)ψDdi

for i < j < λ. In limit steps, we take upper bounds. Now, K ′ =
colimDdi, i < λ belongs both to Eq(ϕ, ψ) and toA. Since we factorized
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kd0 through K ′, K is a λ+-filtered colimit of objects from Eq(ϕ, ψ)
which are λ+-presentable in K. �

Recall that, given functors F,G : K → L, the inserter category
Ins(F,G) is the subcategory of the comma category F ↓ G (cf. 2.3 (4))
consisting of all objects f : FK → GK and all morphisms

FK
f //

Fk

��

GK

Gk

��
FK ′

f ′

// GK ′

The projection functor P : Ins(F,G) → K sends f : FK → GK to K.

Proposition 3.7. Let F,G : K → L be strongly class-accessible func-
tors. Then Ins(ϕ, ψ) is a class-accessible category and the projection
functor P : Ins(F,G) → K is strongly class-accessible.

Proof. Assume that F and G are strongly class-λ-accessible. It is easy
to see that Ins(F,G) has λ-filtered colimits preserved by P . We will
show that each object f : FK → GK in Ins(F,G) is a λ+-directed
colimit of objects a : FA → GA with A λ+-presentable in K. Since a
is then λ+-presentable in Ins(F,G), we will get that Ins(F,G) is class-
λ+-accessible and P is strongly class-λ+-accessible.
We will proceed in a similar way as in the proof of 3.1. First, we know

that K is class-λ+-accessible. Consider f : FK → GK in Ins(F,G) and
take a small full subcategory A of presλ+ K such that K is a canonical
λ+-filtered colimit of A-objects. We also assume that A is closed in K
under λ+-small λ-filtered colimits. We denote the canonical diagram
as D : D → K and its canonical colimit as (kd : Dd → K)d∈D. Let
d0 ∈ D. There is k01 : d0 → d1 in D such that fF (kd0) = G(kd1)f0 for
some f0 : FDd0 → GDd1. Continuing this procedure, we get a chain
(kij : di → dj)i<j<λ and morphisms fi : FDdi → FDdj such that

fF (kdi) = G(kdj)fi

and

fjFD(kij) = GD(kij)fi

for i < j < λ. In limit steps, we take upper bounds. Now, A =
colimDdi and a = colim fi : A → A where i < λ implies that a is
λ+-presentable in Ins(F,G). Since A is in A, we expressed K as a
λ+-filtered colimit of λ+-presentable objects. �
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Remark 3.8. (1) Like in [1], 2.77, the last three propositions imply
that class-accessible categories are closed under lax limits of strongly
class-accessible functors.
(2) Given a class-λ-accessible category K, the morphism category

K→ is class-λ-accessible and both projections P1, P2 : K→ → K are
strongly class-λ-accessible. Here, P1 sends A → B to A and P2 to B.
This is analogous to [1] Ex. 2.c. Since K→ is cocomplete whenever K is
cocomplete, K→ is class-locally λ-presentable provided that K is class-
locally λ-presentable. λ-presentable objects in K→ are morphisms A→
B such that both A and B are λ-presentable in K. Such morphisms
will be called λ-presentable.

Proposition 3.9. Let K be a class-locally λ-presentable category and
A a full subcategory of presλK. Then the closure Ã of A under colimits
in K is a class-locally λ-presentable category.

Proof. We know that

K = Indλ(presλ K)

Let A be the closure of A under colimits of less than λ objects. Then
Indλ(A) is class-locally λ-presentable (by 2.3 (2)) and, clearly, it is
isomorphic to Ã. �

Remark 3.10. Moreover, Ã is coreflective in K. The coreflector is the
functor

Indλ(presλ K) → Indλ(A)

induced by the inclusion of A into presλ K (see the proof of [1], 1.45).

4. Weak factorization systems

An important property of a locally presentable category K is that ev-
ery set C of morphisms yields a weak factorization system (cof(C), C�)
(see [5]). We are going to extend this property to class-locally pre-
sentable categories. Recall that, given morphisms f : A → B and
g : C → D in a category K, we write

f�g (f ⊥ g)

if, in each commutative square

A
u //

f
��

C

g

��
B

v
// D

there is a (unique) diagonal d : B → C with df = u and gd = v.
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For a class C of morphisms of K we put

C� = {g|f�g for each f ∈ C},
�C = {f |f�g for each g ∈ C},

C⊥ = {g|f ⊥ g for each f ∈ C},
⊥C = {f |f ⊥ g for each g ∈ C}.

The smallest class of morphisms of K containing isomorphisms and be-
ing closed under transfinite compositions, pushouts of morphisms from
C and retracts (in the category K→ of morphisms of K) is denoted by
cof(C) while the smallest class of morphisms of K closed under all col-
imits (in K→) and containing C is denoted as colim(C). Finally, Inj(C)
will denote the full subcategory of K consisting of all objects K such
that the unique morphism K → 1 to the terminal object of K be-
longs to C�. These objects K are precisely the objects injective to each
morphism h ∈ C. Analogously, Ort(C) denotes the full subcategory
consisting of objects K such that K → 1 belongs to C⊥. These are the
objects orthogonal to each h ∈ C.
Given two classes L and R of morphisms of K, the pair (L,R) is

called a weak factorization system if

(1) R = L�, L = �R

and

(2) any morphism h of K has a factorization h = gf with f ∈ L
and g ∈ R.

The pair (L,R) is called a factorization system if condition (1) is re-
placed by

(1’) R = L⊥, L = ⊥R.

Definition 4.1. A class C of morphisms of a category K is called cone-
coreflective if, for each morphism f in K, the comma-category C ↓ f
has a weakly terminal set.

Remark 4.2. (1) This means that for each f there is a subset Cf of C
such that each morphism g → f in K→ with g ∈ C factorizes as

g → h→ f

with h ∈ Cf .
Our terminology is taken from [1] (the cone (h → f)h∈Cf forms a

cone-coreflection from C to f). In [14], one calls such classes locally
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small. This is suggestive because each set of morphisms has this prop-
erty. But this term has an established different meaning in category
theory and, moreover, there is no good name for the dual concept.
A union C ∪ C′ of two cone-coreflective classes is cone-coreflective

because Cf ∪ C′
f is weakly terminal in (C ∪ C′ ↓ f) for each f . In fact,

even a union of a set of cone-coreflective classes is cone-coreflective.
(2) Given a weak factorization system (L,R), then the class L is

cone-coreflective. This immediately follows from the fact that the mor-
phism f in a factorization h = gf of h is a weak coreflection of h. Thus
L is weakly coreflective, consequently cone-coreflective.
(3) The following result was proved in [9] where it is called a gener-

alized small object argument. The proof uses an idea originated in [14].
Let C be cone-coreflective class of morphisms of a cocomplete category
K. Suppose that the domains of all elements in C have bounded pre-
sentation ranks. Then every morphism f ∈ K→ admits a factorization
into a C-cellular morphism (see below) followed by a morphism in C�.
In order to factorize a morphism f : A→ B, we take a colimit of the

diagram

A

C

u

OO

h
// D

indexed by triples (u, h, v) with h ∈ Cf such that fu = vh. This means
the pushout of

A

∐
(u,h,v)

C

<u>

OO

∐
h

//
∐

(u,h,v)

D

We obtain a factorization

A = A0
f01

−−−−−→ A1
f1

−−−−→ B.

Now, one applies this construction to f1 and continues up to a regular
cardinal λ such that each morphism from C has a λ-presentable domain
(one takes colimits in limit steps). This implies that fλ is in C� and
thus

A
f0λ−−−−−→ Aλ

fλ−−−−−→ B
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is the desired factorization of f . Let us stress that the morphism f0λ is
a transfinite composition of pushouts of elements of C. Such morphisms
are called C-cellular.
The resulting factorization of f depends on the subset

C∗

f =
⋃

i<λ

Cfi .

Given a morphism (a, b) : f → f ′ where f : A → B and f ′ : A′ → B′

in K→, we get the induced morphism aλ : Aλ → A′
λ with aλf0λ = f ′

0λa

and f ′
λaλ = bfλ. The reason is that, given a triple (u, h, v) for f , the

composition (au, bv) : h → f ′ factorizes through a triple (u′, h′, v′) for
f ′. Thus our factorization K→ → K→ acts both on objects and on
morphisms. But we cannot expect that it is functorial, i.e., that it
preserves composition. The problem is in finding compatible choices of
factorizations of triples above.
There is a canonical choice of a triple above in the case that C∗

f ⊂
C∗
f ′ . Thus we can make our factorization functorial on each small full

subcategory A of K→. It suffices to use

C∗

A =
⋃

f∈A

C∗

f

for factorizing. Of course, for different full subcategories A, the result-
ing factorizations are different.
(4) Let K be class-locally µ-presentable category and C be a cone-

coreflective class of morphisms whose domains and codomains are λ-
presentable. Following 2.8, we can assume that λ < µ. Consider a
small full subcategory A of presµK. Since (Indµ A)→ = Indµ(A

→),

CA =
⋃

f∈A

Cf

can be used as Ch for each morphism h in IndµA. Since pushouts
commute with µ-filtered colimits in K, C∗

A can be used as C∗
h. Thus

we can make our factorization functorial on IndµA. Moreover, the
corresponding functor is µ-accessible. Thus it is strongly ν-accessible
for some ν but this cardinal depends on A in general. Like in (3), the
factorization itself depends on A.
In the case when K is locally presentable and C is a set, we have

K = IndµA for some µ and we get a strongly accessible functorial
factorization on K. This was claimed by J. H. Smith and our proof
completes those from [16], 7.1 and [23] 3.1 (here, one should use our
triples (u, h, v) instead of pairs (u, h)).

We have proved the following theorem.



16 B. CHORNY AND J. ROSICKÝ

Theorem 4.3. Let K be a class-locally presentable category, C a cone-
coreflective class of morphisms of K and assume that there is a regular
cardinal λ such that each morphism from C has the λ-presentable do-
main. Then (cof(C), C�) is a weak factorization system in K.

A full subcategory L of K is called weakly reflective in K if, for each
K in K, the comma-category K ↓ L has a weakly initial object. It
means the existence of a morphism r : K → K∗ with K∗ ∈ L such that
each morphism K → L with L ∈ L factorizes through r.

Corollary 4.4. Let K be a class-locally presentable category, C a cone-
coreflective class of λ-presentable morphisms of K. Then Inj(C) is
weakly reflective and closed under λ-filtered colimits in K.

Proof. A weak reflection of K is given by a (cof(C), C�) factorization

K
r

−−−−→ K∗ −−−→ 1.

Assume that (kd : Kd → K)d∈D is a λ-filtered colimit of objects Kd ∈
Inj(C). Given h : C → D in C and u : C → K, there is d ∈ D and
u′ : C → Kd with u = kdu

′. There is v : D → Kd with vh = u′. Since
kdvh = u, K ∈ Inj(C). �

Corollary 4.5. Let K be a class-locally presentable category, C a cone-
coreflective class of morphisms of K. Let λ be a regular cardinal such
that each morphism from C is λ-presentable. Then C� is closed under
λ-filtered colimits in K→.

Proof. It suffices to observe that g has a right lifting property w.r.t.
f : A→ B if and only if g is injective in K→ to the morphism

(f, idB) : f → idB .

Since f is λ-presentable in K→, the result follows from 4.4. �

The following example shows that, in 4.4, C� and Inj(C) do not need
to be class-accessible.

Example 4.6. Let O be the category whose objects are ordinal num-
bers (considered as well-ordered sets) and isotone maps. The category
P(O) from 2.2 (2) can be understood as a transfinite extension of sim-
plicial sets because hom(−, α + 1) can be taken as the α-simplex ∆α.
Since O is approximately complete, P(O) is class-locally presentable.
Let ∆1s be the symmetric 1-simplex. This means the object having

two points 0 and 1, two non-degenerated 1-simplices [0, 1] and [1, 0] and
all α-simplices made out from these. In more detail, ∆1s is a coequalizer
of morphisms f, g : ∆1 → ∆2 where f sends ∆1 to the face [0, 2] of ∆2

and g is the constant morphism on 0. Let j : ∆1 → ∆1s be the inclusion
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on [0, 1]. Then, following 4.3, (cof(j), j�) is a weak factorization system
cofibrantly generated by a single morphism. Injectivity with respect to
j means that each 1-simplex is symmetrized. We will show that Inj(j)
is not class-accessible. The reason is that, given a regular cardinal α,
each weak reflection of ∆α to Inj(j) adds at least α-many 1-simplices
because we have to symmetrize each 1-simplex in ∆α. Let (∆α)

∗ denote
the weak reflection which adds to each 1-simplex just one symmetric
1-simplex. We will show that, for each regular cardinal α, (∆α)

∗ is not
α-presentable in Inj(j).
Let α be a cardinal and (∆α)

∗β, β ≤ α extends each 1-simplex in
∆α by β-many symmetric 1-simplices indexed by ordinals i < β. Then
(∆α)

∗α is an α-directed colimit of (∆α)
∗β , β < α in Inj(j). We index

all 1-simplices in ∆α by ordinals i < α and consider the morphism
f : ∆∗

α → (∆α)
∗α sending the symmetric 1-simplex added to the i-th

1-simplex ei in ∆α to the i-th added symmetric 1-simplex extending ei.
Clearly, f does not factorize through any (∆α)

∗β , β < α.
Now, assume that Inj(j) is class-λ-accessible. Then ∆∗

λ is a λ-
directed colimit kd : Kd → ∆∗

λ of λ-presentable objects Kd in Inj(j).
Since Inj(j) is closed under filtered colimits in P(O), the weak reflec-
tion r : ∆λ → ∆∗

λ factorizes through some kd, i.e., r = kdf . Since r is a
weak reflection, there exists g : ∆∗

λ → Kd with gr = f . Thus kdgr = r.
Consider a non-degenerated 1-simplex [i, j] in ∆λ. Then, ∆∗

λ contains
the new 1-simplex [j, i] such that [i, j, i] is a 2-simplex with [i, i] degen-
erated. Since [j, i] is the only 1-simplex with this property, kdg must
send it to itself. Thus kdg = id∆∗

λ
. Therefore ∆∗

λ is λ-presentable as
a retract of Kd, which is a contradiction. Consequently, Inj(j) is not
class-accessible.

Recall that a morphism is called λ-presentable if it has the λ-presen-
table domain and the λ-presentable codomain (see 3.8 (2)).

Definition 4.7. Let K be a class-locally λ-presentable category. A
weak factorization system (L,R) in K is called cofibrantly class-λ-
generated if L = cof(C) for a cone-coreflective class C of morphisms
such that

(1) morphisms from C are λ-presentable and
(2) any morphism between λ-presentable objects has a weak fac-

torization with the middle object λ-presentable.

A cone-coreflective class C of morphisms will be called λ-bounded if
(cof(C), cof(C)�) satisfies conditions (1) and (2) above.
We say that (L,R) is cofibrantly class-generated if there is a regular

cardinal λ such that (L,R) is cofibrantly class-λ-generated. The same
for bounded.
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Remark 4.8. (1) Any set C is a cone-coreflective class. In this case,
the factorization is always functorial (because, in 4.2, Cf = C for each
f). But, 4.6 shows that C does not need to be bounded. This follows
from 4.10 but there is a direct verification. Assume that ∆λ → ∆0 has
a weak factorization with the λ-presentable middle object K. There
are morphisms k : K → ∆∗

λ and g : ∆∗
λ → K and, like in 4.6, kg =

id∆∗

λ
. Thus ∆∗

λ is λ-presentable in P(O) and, therefore, in Inj(j), which
cannot happen.
(2) Let C be a cone-coreflective class of morphisms in a class-locally

λ-presentable category. Given f : A → B and Cf , we denote by Tf a
set of all triples (u, h, v) from 4.2 (3) with h ∈ Cf which are needed for
cone-coreflectivity. Let

T ∗

f =
⋃

i<λ

Tfi.

Assume the existence of a regular cardinal µ > λ such that that the
cardinality of T ∗

f is smaller than µ for each morphism f : A→ B with
A and B µ-presentable. Then for such an f , all objects Ai, i ≤ λ

from 4.2(3) are µ-presentable and Aλ is the middle object in a weak
factorization of f . Thus C is µ-bounded. Due to choices of sets Tf , we
cannot expect to get a functorial factorization in this way. Even, we
cannot make it functorial on small full subcategories.
(3) Given a weak factorization f = f2f1 from 4.7 (2), we can choose

Cf = {f1} and Tf = {(idA, f1, f2)}. Then (2) above implies that 4.2 (2)
yields a weak factorization from 4.7 (2).
(4) We do not know whether a λ-bounded C is µ-bounded for λ ⊳ µ.

This is true provided that the factorization is functorial – then it is
given by a strongly class-λ-accessible functor which is strongly class-µ-
accessible (see 2.8).
(5) We say that C is (λ, λ+)-bounded if it satisfies 4.7 (1) for λ and

(2) for λ+. Each (λ, λ+)-bounded class is λ+-bounded. We will show
that a union C ∪ C′ of two (λ, λ+)-bounded classes is λ+-bounded.
The union is cone-coreflective (see 4.2 (1)). Let f : A → B be a

morphism between λ+-presentable objects. We proceed by a transfinite
construction for i ≤ λ. We start with its (cof(C), C�) factorization

A0 = A
f01

−−−−−→ A1
g0

−−−−→ B

Then we take a (cof(C′), (C′)�) factorization of g0

A1
f12

−−−−−→ A2
g1

−−−−→ B

We put f02 = f12f01 and continue the procedure by a (cof(C), C�)
factorization of g1. In a limit step i, fji : Aj → Ai is given by a
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transfinite composition and gi : Ai → B is the induced morphism. We
finish at λ and get a factorization

f : A
f0λ−−−−−→ Aλ

gλ−−−−−→ B

The object Aλ is λ+-presentable because λ+-presentable objects are
closed under λ+-small colimits and both C and C′ satisfy (2) for λ+.
We have f0λ ∈ cof(C ∪ C′). Finally, gλ is both a λ-filtered colimit of
morphisms from C� and a λ-filtered colimit of morphisms from (C′)�.
Following 4.5, gλ ∈ C� ∩ (C′)� = (C ∪ C′)�.

Theorem 4.9. Let K be a class-locally λ-presentable category and
(L,R) a cofibrantly class-λ-generated weak factorization system. Then
R is a class-λ-accessible category strongly λ-accessibly embedded in K→.

Proof. Following 3.8 (2), K→ is class-locally λ-presentable and the pro-
jections P1, P2 : K

→ → K are strongly class-λ-accessible. Following
4.5, R is closed in K→ under λ-filtered colimits. Consider a morphism
f : K → L in R. We have to show that f is a λ-filtered colimit of
λ-presentable objects from R. Following 2.3 (2), K→ is a union of a
chain

Indλ(A
→
0 ) ⊆ Indλ(A

→
1 ) ⊆ . . . Indλ(A

→
i ) ⊆ . . .

of locally λ-presentable categories and strongly class-λ-accessible func-
tors. There is i0 such that f belongs to Indλ(A

→
i0
). Following 4.4 and

4.7 (2), given a λ-presentable object h of K→ , its weak factorization
h2h1 has h2 λ-presentable in K→ and thus in R. Since A→

i0
is small,

there is i1 such that A→
i1

contains all h2 for h from A→
i0
. Analogously,

there is i2 such that A→
i2

contains all h2 for h from A→
i1
. We will con-

tinue this procedure, in limit steps we take ij as the supremum of all
ik with k < j. Let B be the intersection of A→

iλ
and R. Consider a

morphism (a, b) : h → f with h : A → B in A→
iλ
. Then h belongs to

A→
ij

for some j < λ. Thus B contains h2. Since f is in R and h1 in L,
there is c : C → K such that fc = bh2 and ch1 = a; here C is the mid-
dle object in the weak factorization h = h2h1. Hence (a, b) factorizes
through h2. It remains to show that B ↓ f is λ-filtered. Then it will
be cofinal in A→

iλ
↓ f and f will be the canonical colimit of B-objects.

Let X be a λ-small subcategory of B ↓ f . There is j < λ such
that X is a subcategory of Aij ↓ f . Thus X has an upper bound
(aX , bX) : h → f , h ∈ X in A→

ij
↓ f . Then h2 is an upper bound of X

in B ↓ f . This proves that the latter category is λ-filtered. �
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Corollary 4.10. Let K be a class-locally λ-presentable category with
a λ-presentable terminal object and (L,R) be a cofibrantly class-λ-
generated weak factorization system. Then Inj(L) is a class-accessible
category strongly accessibly embedded in K.

Proof. Since a weak reflection of an object K in Inj(L) is given by a
weak factorization of its morphism K → 1 to a terminal object, the
result follows from the proof of 4.9. �

Theorem 4.11. Let K be a class-locally presentable category, C a cone-
coreflective class of morphisms of K and assume that there is a regular
cardinal λ such that each morphism from C is λ-presentable. Then
(colim(C), C⊥) is a factorization system in K.

Proof. Given a morphism f : A → B, we form the pushout of f and
f and denote by f ∗ a unique morphism making the following diagram
commutative

A
f //

f

��

B

p2

��
idB

��0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

B
p1

//

idB

''PP
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

A∗

f∗

  A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

Let C̄ = C∪C∗ where C∗ = {f ∗ | f ∈ C}. Since pushouts of λ-presentable
objects are λ-presentable, each morphism from C̄ has a λ-presentable
domain. It suffices to show that the class C̄ is cone-coreflective. Then,
following 4.3, (cof(C̄), C̄�) is a weak factorization system. Following
the proof of 4.1 in [7], we conclude that C̄� = C⊥ and (cof(C̄), C⊥)
is a factorization system. Finally, the proof of 2.2 in [17] shows that
cof(C̄) = colim(C).
We have to prove that the class C∗ is cone-coreflective. Let g be a

morphism in K and take the pullback

D∗

q1 //

q2

��

C

g

��
C

g
// D
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We have a unique g∗ : C → D∗ such that qig∗ = idC for i = 1, 2. We
will show that commutative squares

A∗ u //

f∗

��

C

g

��
B

v
// D

with f ∈ C uniquely correspond to commutative squares

A
t //

f

��

C

g∗

��
B

h
// D∗

The correspondence assigns to u and v the pair t, h where t = up1f and
h is given by qih = upi for i = 1, 2 (because gup1 = v = gup2). Since
qihf = upif = t = qig∗t for i = 1, 2, we have hf = g∗t. Conversely,
given t and h, we get u and v by means of upi = qih for i = 1, 2
and v = gq1h. Since gupi = gqih = v = vf ∗pi for i = 1, 2, we have
gu = vf ∗. The one-to-one correspondence between u and h is evident.
Since

v = vf ∗p1 = gup1 = gq1h

and
t = q1g∗t = q1hf = up1f,

there is a one-to-one correspondence between v and t as well.
Since the class C is cone-coreflective, the comma-category C ↓ g∗ has

a weakly terminal set Cg∗ . We will show that the corresponding set
(Cg∗)

∗ is weakly terminal in C∗ ↓ g. Given (u, v) : f ∗ → g, we take the
corresponding (t, h) : f → g∗. There is a factorization

(t, h) : f
(t1,h1)

−−−−−−−→ e
(t2,h2)

−−−−−−−→ g∗

with e : X → Y in Cg∗ . Let (u2, v2) : e
∗ → g corresponds to (t2, h2),

v1 = h1 and u1 : A
∗ → X∗ is induced by u1pi = pih1 for i = 1, 2 where

pi are from the pushout defining e∗. Since

u2u1pi = u2pih1 = qih2h1 = qih = upi

for i = 1, 2, we have u2u1 = u. Further,

v2v1 = (gq1h2)h1 = gq1h = v.

Finally, since
e∗u1pi = e∗pih1 = h1 = v1 = v1f

∗pi
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for i = 1, 2, we have d∗u1 = v1f
∗. Hence we get a factorization

(u, v) : f ∗ (u1,v1)
−−−−−−−→ e∗

(u2,v2)
−−−−−−−→ g

with e∗ ∈ (Cg∗)
∗. �

Corollary 4.12. Let K be a class-locally λ-presentable category and C
a cone-coreflective class of λ-presentable morphisms of K. Then Ort(C)
is reflective and closed under λ-filtered colimits in K. Moreover, Ort(C)
is class-locally λ-presentable.

Proof. A reflection of R(K) is given by a (colim(C), C⊥) factorization

K
r

−−−−→ R(K) −−−→ 1.

Since Ort(C) = Inj(C̄) where C̄ is from the proof of 4.11, Ort(C) is closed
under λ-filtered colimits in K (following 4.4). Following 2.6, Ort(C) is
class-locally λ-presentable. �

Remark 4.13. (1) Given C from 4.12, we show in the same way as in
4.9 that C⊥ is class-locally λ-presentable.
Concerning colim(C), we know that it is coreflective in K→ and the

coreflector

R : K→ → colim(C)

preserves λ-filtered colimits. Hence colim(C) is a full image of a class-
accessible functor. But we do not know whether R : K→ → K→ is
strongly class-accessible and we thus do not know whether colim(C) is
class-locally presentable. What is missing is the condition 4.7 (2).
(2) Let K be a class-locally λ-presentable category written as a union

of a chain of locally λ-presentable full strongly λ-accessibly embedded
subcategories Ki (see 3.10). Let C be a class-λ-accessible full subcat-
egory of K such that (C ∩ Ki)

⊥ (calculated in Ki) is reflective in Ki.
Then C⊥ is reflective in K. This follows from the fact that, given a
λ-filtered colimit f = colim(fd)d∈D, then

⋂

d∈D

f⊥

d ⊆ f⊥

This observation is behind the proof that each small scheme has a
sheafification with respect to the flat topology (see [25], small func-
tors are called basically bounded there and 3.1 shows that faithfully
flat morphisms are class-finitely-accessible). It would be interesting to
know whether this is true for the etale topology as well.
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[1] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories,
Cambridge University Press 1994.
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